
Hacking Leopard:
Tools and Techniques for Attacking the Newest Mac OS X

Charlie Miller
Jake Honoroff
Independent Security Evaluators

cmiller@securityevaluators.com

jake@securityevaluators.com

June 22, 2007

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:jake@securityevaluators.com
mailto:jake@securityevaluators.com

Abstract
This paper serves as an introduction to the
tools and techniques available on the Mac
OS X operating system for vulnerability
analysis. It is particularly targeted for those
security researchers already familiar with
tools for Windows and/or Linux. It also re-
veals tools that are only found on Mac OS X
and how they can be used to find security
flaws, especially those that can be used in
conjunction with fuzzing. Finally, it introduces
a few tools recently ported from Windows to
Mac OS X, pydbg and PaiMei.

Introduction
According to the Apple website, “Mac OS X
delivers the highest level of security through
the adoption of industry standards, open
software development and wise architectural
decisions.” Of course, the Month of Apple
Bugs and the flurry of activity after the re-
lease of Safari for Windows showed that
Macs are just as susceptible to vulnerabilities
as other operating systems. Arguably, two
factors keep the number of announced vul-
nerabilities on Mac OS X low: the lack of re-
searchers interested in exploring this operat-
ing system due to its low market share and
the steep learning curve for researchers who
are unfamiliar with the platform. The first of
these reasons is going away as Apple’s mar-
ket share continues to rise. This paper hopes
to address the second reason, that is, to pro-
vide researchers already familiar with Win-
dows and Linux the knowledge and tools
necessary to search for new security bugs in
this operating system. Specifically, this paper
will address the new forthcoming release of
“Leopard”, the newest version of Mac OS X.
Happily, there are plenty of bugs and some
Mac-only tools that help to find them.

Legal Disclaimer: Due to the fact Apple
pushed back the release of Leopard, and the
only releases of Leopard are available under
NDA, this paper will avoid using screenshots
or code directly from Leopard. Most of the
information is not specific to Leopard anyway,

besides the Dtrace examples, which are il-
lustrated using Solaris 10.

Why Hack Macs?
While the market share of Apple computers
running Mac OS X is still small, at roughly
6.5% of all operating systems, it is growing.
The market share has gone up approximately
35% in the last year. This increasing market
share is attracting more and more attention
by computer researchers.

The growing interest in vulnerability analysis
of Mac OS X can be seen in some recent de-
velopments.

The first major event occurred in January
2007 with the "Month of Apple Bugs". Two
computer security researchers, LMH and
Kevin Finisterre, released a vulnerability a
day in Mac OS X or in applications that run in
Mac OS X. The types of bugs reported were
in a variety of programs and most appear ex-
ploitable. There were at least two exploitable
default client-side remote exploits. Addition-
ally, no less than five local exploits were an-
nounced that worked against default configu-
rations.

A few months later, in April, at CanSecWest,
the “Hack a Mac” contest took place. At-
tendees were encouraged to try to break into
a default, patched MacBook, and if they did,
they would win the computer. Eventually, a
$10,000 reward was added by TippingPoint’s
Zero Day Initiative Program. The attack was
successfully announced the next day.

Finally, in June, Apple released the Safari
web browser for Windows. Within hours, at
least 18 critical vulnerabilities were discov-
ered in this application by numerous re-
searchers including Aviv Raff, David Maynor,
and Thor Larhom.

So whether you’re interested in Apple’s in-
creasing market share, or you’d like to jump
on the bandwagon, or you’d just like to shut
up the local fanboy, this paper will get you

started with some of the basics of vulnerabil-
ity analysis for the newest Mac OS X operat-
ing system, Leopard.

Hacker Friendly Features
Apple's Mac OS X is touted as the most user
friendly operating system available. This is
also true for security researchers wishing to
test the security of the OS. Consider Safari,
the default web browser for Mac OS X. Sa-
fari will automatically launch the following ap-
plications when it finds corresponding files on
the Internet:

• Address Book

• Finder

• iChat

• Script Editor

• iTunes

• Dictionary

• Help Viewer

• iCal

• Keynote

• Mail

• iPhoto

• QuickTime Player

• Sherlock

• Terminal

• BOMArchiveHelper

• Preview

• DiskImageMounter

This list was obtained with the RCDefalutApp
application. Therefore, while these applica-

tions can not always be given much user
supplied data, a vulnerability in a program
such as iPhoto, Preview, or QuickTime Player
can be easily extended into a Safari exploit.
Additionally, by default, Safari will open files
associated with these programs (PDF's,
MP3's, WAV's, ZIP's, etc) without prompting
or warning the user. If that is not enough, by
default, Safari allows pop-ups, Java, and
Javascript, all by default.

Another nice thing about Mac OS X is that
some of the source code is available,
http://developer.apple.com/opensource/index.
html. This includes most of the standard
Unix open source tools, as well as Webkit,
the html parsing engine for Safari - more on
this later.

Another friendly feature of Mac OS X is that it
allows users to do some system configuration
that they normally wouldn't be allowed to do.
This includes over fifty setuid root programs
on a default install of Mac OS X. Most of
these you would have probably never heard
of, including:

• Locum

• NetCfgTool

• afpLoad

• TimeZoneSettingTool

• securityFixerTool

while others include familiar files with unfa-
miliar file permissions,

• netstat

• top

• ps

Most of the files in this last group have not
been setuid root on Linux systems in many
years.

http://developer.apple.com/opensource/index.html
http://developer.apple.com/opensource/index.html
http://developer.apple.com/opensource/index.html
http://developer.apple.com/opensource/index.html

Gotchas
While Macs have some great development
tools, they do lack some traditional tools used
in Linux analysis. There are usually equiva-
lent tools available, though, as we’ll see.

First, there are differences in naming conven-
tions. In Mac OS X, shared objects, a.k.a.
dynamic libraries, have the file extension
DYLIB. Device drivers, a.k.a. kernel mod-
ules, have the file extension KEXT. Finally,
the Mac OS X applications reside in /Applica-
tions, not /bin or /usr/bin. Furthermore, the
actual binary will have a pathname of some-
thing like

/Applications/Preview.app/Contents/MacOS/Previ
ew

Probably the first thing someone with a Linux
background will notice when they start to look
at binaries is there is no ldd command. The
Mac OS X equivalent command is otool, see
below.

$ otool -L /bin/ls

/bin/ls:

 /usr/lib/libncurses.5.4.dylib (compatibil-
ity version 5.4.0, current version 5.4.0)

 /usr/lib/libgcc_s.1.dylib (compatibility
version 1.0.0, current version 1.0.0)

 /usr/lib/libSystem.B.dylib (compatibility
version 1.0.0, current version 88.1.5)

Likewise, there is no strace or ltrace. The
command to use is ktrace (or dtrace in Leop-
ard. More on that in a later section).

$ ktrace -tc w

...

$ kdump

 4087 ktrace RET ktrace 0

 4 0 8 7 k t r a c e C A L L
execve(0xbffff3cc,0xbffff990,0xbffff998)

Until February 2007, IDA Pro did not support
Universal Binaries, the type of file used by

Mac OS X applications. This made disas-
sembly very difficult. Luckily, it works now!

Another point to remember is that Mac OS X
shellcode has a couple of restrictions. First,
you cannot call execve() until you call vfork().
Also, despite popular belief, it appears you
must call vfork() instead of fork().

One of the biggest bummers regarding Mac
OS X is that ptrace() is hopelessly broken.
For example, i t doesn' t support
PTRACE_PEEKUSR, PTRACE_GETREGS,
etc. This makes writing a ptrace-based de-
bugger impossible. Instead, use the Mach
API, the interface into the Darwin kernel.
This is how gdb and pydbg both work.

The way the heap is handled is different than
in Linux and Windows. This, of course, has a
large impact on heap overflows in this operat-
ing system. The Mac OS X heap is com-
posed of zones, which are variable size por-
tions of virtual memory, and blocks which are
allocated within these zones, see “ OS X
Heap Exploitation Techniques”. The docu-
ment is a must read. However, since 10.4.1,
the large zone is no longer located at an ad-
dress smaller than the tiny zone, which
makes the overall exploitation method dis-
cussed in that paper not work as advertised.
So unlike most OS’s, there is not a lot of
heap management pointers available on the
heap for overwriting. Instead, typically, you
need to overwrite application specific data.

One last caveat is that on Mac OS X,
LD_PRELOAD is replaced by DYLD_IN-
SERT_LIBRARIES. You’ll need this if you
want to use sharefuzz or perform something
similar to Electric Fence.

Fuzzing Tools
With ptrace() broken, what types of fuzzing
tools are available for Mac OS X?

While the applications and development tools
mentioned throughout this paper were readily
available in Mac, there wasn’t much in the

way of fuzzers. However, this paper intro-
duces two recent Windows tools, pydbg and
PaiMei, that are now available from the Pai-
Mei website.

pydbg is an open source tool that enables a
researcher to perform a number of useful ac-
tions, all from within the Python programing
language. For example, pydbg can be used
to monitor a program for exceptions or
crashes, to take memory snapshots of the
process, or as a general purpose debugger.
pydbg was written originally for Windows, but
this tool is now available for Mac OS X in a
beta release. Most pydbg features are sup-
ported. Using pydbg, it is relatively easy to
write fuzzing and fuzz monitoring tools.

Likewise, PaiMei is a reverse engineering
framework, until now only available for
Windows. It is built upon pydbg and al-
lows for process tracing and file fuzzing
while recording all data in a back end da-

tabase. Furthermore, it can output data
to graphing programs or to IDA Pro.
PaiMei is now available for Mac OS X in
a beta release from the PaiMei website.

Mac Specific Tools and
Techniques
Up to this point, we've discussed various dif-
ficulties for security researchers using Mac
OS X and how to get around these problems.
However, this is only half the story. There are
a number of features of Mac OS X that can
significantly help researchers discover vul-
nerabilities, especially when fuzzing. Most of
these are debugging facilities provided to
help debug end user problems, but security
researchers can use them as well.

Debugging Symbols
The first is the ability to use debugging sym-
bols from the Mac OS X frameworks. These
libraries contain extra asserts and produce

Figure 1: PAIMEIFile fuzz for Mac OS X in action

verbose output. This output will be on the
system console if launched through a stan-
dard way, i.e. double clicking on it. Alterna-
tively, it will appear in the terminal window if
launched from within a terminal window.
These additional assertions can be used to
help identify when problems in the application
arise as early as possible, something nice to
do when fuzzing, for example.

Core Dumps
Core dumps can be useful while fuzzing.
They can be enabled globally by editing the
/etc/launchd.conf file. Or, within a terminal,
they can be enabled by using the ulimit pro-
gram. Core files generated by the system
can be found in /cores.

Environment Variables
There are a number of interesting environ-
ment variables that can be used for memory
allocation.

Variable Description

Mal-
locScribble

If set, free() sets each
byte of released memory
to 0x55

MallocPre-
Scribble

If set, malloc() sets each
byte of newly allocated
memory to 0xAA

Mal-
locGuard-
Edges

If set, adds guard pages
before and after large
memory allocations.

Malloc-
CheckHeap

The number of alloca-
tions until malloc() begins
validating the heap.

Malloc-
Check-
HeapEach

The number of alloca-
tions between heap vali-
dations.

INIT_Proce
sses

If set, delay launch of ap-
plications by 15 seconds.

Setting these environment variables can be
extremely useful during fuzzing. The main
benefit they provide is quickly identifying in-
puts that have corrupted memory. A couple
of common problems when fuzzing is that the
heap may become corrupt, but unless the
application uses the corrupted memory, it will
not crash. This makes finding off-by-one er-
rors especially difficult. Another problem is a
program that crashes well after the memory
corruption occurs. This makes finding the
vulnerability time consuming and difficult.
These environment variables can help allevi-
ate these problems.

For example, you can have malloc() check
the heap integrity every so many allocations.
Additionally, using MallocScribble will help
detect double free situations when they arise.
Using MallocGuardEdges is similar to using
Electric Fence for Linux and will identify
buffer overflows when they occur. Using
these variables helps make fuzzing more ef-
ficient and effective.

Another tool, which is similar to the Mal-
locGuardEdges environment variable is the
Guarded Memory Allocator, libgmalloc. This
is analogous to Electric Fence and is started
in a similar fashion,

DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib
TextEdit

Command Line Tools
There are a number of tools available that
can be used to monitor applications, similar
to the suite of tools available from sysinter-
nals for Windows. Below are some of the
most useful,

fs_usage: Records file system access for a
given process. Similar to a non-GUI filemon.

sc_usage: Records system call information
for a given process.

vmmap: Dumps virtual memory for a process.

heap: Gives information about the heap of a
process

malloc_history: A tool that can either monitor
all memory allocation/deallocation or can log
memory allocated/deallocated at a specified
address.

lsof: The standard UNIX tool.

Using these tools, information can be gained
from a running process that can help identify
files being used as well as observing how
memory is being used.

CrashReporter
Much of the fuzzing literature discusses the
need to attach a debugger to the target appli-
cation in order to monitor when it crashes. In
fact, tools like SPIKE, PaiMei, and FileFuzz
all do exactly this for their various platforms.
Apple was kind enough to let us not worry
about such things, thanks to CrashReporter.

When an application crashes, CrashReporter
will record the crash in the system log
(/var/log/system.log) and put details of the
c r a s h i n t h e c r a s h l o g
(/Library/Logs/CrashReporter/<ProgramName
>.crash.log). This crash log includes the
application name, pid, exception information,
context information, and a backtrace. If it is a
GUI application, it presents you with a dialog
box like in Figure 2.

Crashreporter can be configured using
CrashReporterPrefs application to allow the
option to attach to the process with GDB after
it crashes, see Figure 3. Also, note that this
will run the commands from your .gdbinit file,
too.

Source Code
Having source code can make analysis eas-
ier when it is available. For example, appli-
cations can be rebuilt with debugging sym-
bols or instrumented to provide code cover-
age.

For Mac OS X, source code is available for
the kernel, any open source software in-
cluded, and WebKit, the HTML engine used
in various applications, including Safari, Mail,
and Dashboard.

For example, to build WebKit to report code
coverage information, simply add the -cover-
age flag,

Figure 3: Developer information incorpo-
rated into CrashReporter

Figure 4: CrashReporter with a debug
version of WebKit.

Figure 2: Standard CrashReporter dia-
logue

WebKit/WebKitTools/Scripts/build-webkit -cov-
erage

After fuzzing Safari or any other WebKit en-
abled application, code coverage can be
viewed using lcov, or a similar package, see
Figure 5.

Also, don’t symbols make the crash reported
earlier much nicer to read (see Figure 4)?

Let Robots Do the Work
Another great way to fuzz is using the
Automator application. This application al-
lows you to perform repetitive actions auto-

matically, exactly what we want for fuzzing!
There are many built-in actions that can be
used in order to piece together something
useful. Additionally, arbitrary Applescript can
be executed. Most Mac OS X applications
have embedded code that allows Applescript
to access almost any part of the application
for automation, i.e. menu selection, button
presses, etc.

For a simple example, we’ll build a Preview
fuzzer. Simply start automator, drag a few
actions into the workflow,

Figure 5: LCOV generated code coverage information for WebKit.

• Ask for Finder Items

• Open Images in Preview

• Move to Trash

After this, select File->Save As and choose
Application. Next, create a bunch of fuzzed
files that Preview will read. Finally, launch
the fuzzer you built, select the files, and let
the thing run!

Dtrace
One of the most exciting additions to be in-
troduced in Leopard is the inclusion of
Dtrace, originally for Solaris. Dtrace is a dy-
namic tracing mechanism built directly into
the kernel and many of the applications.
Dtrace uses the language D, a subset of the
common C programming language. Pro-
grams, or traces, can be written that can be
used to dynamically instrument any applica-
tion running on Mac OS X.

Dtrace works because the operating system
has a set of probes located throughout the
kernel. Dtrace can bind an action to each of
these probes. As each probe fires, the data
is returned to Dtrace for reporting. Best of
all, Dtrace is designed such that inactive
probes or probes that are not firing cause no

slowdown to the application or operating sys-
tem.

What can security researchers use Dtrace
for? One of the first things that a researcher
needs to known when assessing an applica-
tion for potential vulnerabilities is what code
is executed. The application may consist of a
binary and numerous libraries. Using Dtrace,
the researcher can quickly identify the com-
ponents that are affected by user controlled
input and can get code coverage or instruc-
tions traces with little difficulty. It is also pos-
sible to monitor applications access to file
system, network, or other resources.

A set of simple Dtrace programs is provided
in the Appendix. The first one emulates the
windows program Filemon by monitoring and
recording access to the open, close, read,
and write system calls. The next sample
program is analogous to the Sharefuzz envi-
ronment variable fuzzer. It simply returns
long strings when programs attempt to call
getenv(). Such a program is literally 3 lines
of D. Next, a sample program that behaves
like the ltrace library tracing program is pro-
vided. Additionally, a program that can do
instruction traces in a target program is
given. Such a program could be automati-
cally produced from an IDA Pro plugin. Fi-
nally, a Dtrace program is given that records
and prints code coverage in a target pro-
gram.

Leopard also comes with a new application
called Xray. This allows tools, including
Dtrace applications, to display their results in
real time using a timeline editor similar to Ga-
rageBand. This customizable application
could be configured to be a fuzzing control
panel!

Conclusions
As Mac OS X becomes more prevalent, it
also becomes a more obvious target for se-
curity researchers. However, for a re-
searcher coming from the Windows or Linux
world, there can be a steep learning curve to

Figure 6: The workflow for a simple Pre-
view fuzzer

find the equivalent tools that they are accus-
tomed to using. By using the tools outlined in
this paper, which include both Mac versions
of well-known tools and some Mac OS X ex-
clusive tools, security researchers can com-
fortably focus their efforts on this platform.

References
Mac OS X internals: A Systems Approach,
Amit Singh, Addison Wesley, 2006

Apple - Mac OS X - Leopard Sneak Peak:
http://www.apple.com/macosx/leopard/

Mac OS X Debugging Magic:
http://developer.apple.com/technotes/tn2004/
tn2124.html

CrashReporter:
http://developer.apple.com/technotes/tn2004/
tn2123.html

AppleScript:
http://www.apple.com/macosx/features/apple
script/

Automator:
http://www.apple.com/macosx/features/autom
ator/

PaiMei:
http://pedram.redhive.com/PaiMei/docs/

Abusing Mach on Mac OS X:
http://www.uninformed.org/?v=4\&a=3\&t=pdf

DTrace to be included in Next Mac OS X:
http://sun.systemnews.com/articles/102/2/ne
ws/16842

DTrace User Guide
http://docs.sun.com/app/docs/doc/819-5488

MacPython OSA Modules:
http://www.python.org/doc/2.3.5/mac/scripting
.html

Fuzzing Software Tools // iDefense Labs:
http://labs.idefense.com/software/fuzzing.php
\#more_spikefile

Kernel Programming Guide: Mach API Ref-
erence:
http://developer.apple.com/documentation/Da
rwin/Conceptual/

OS X Heap Exploitation Techniques
http://felinemenace.org/papers/p63-0x05_OS
X_Heap_Exploitation_Technqiues.txt

Hack a Mac, get $10,000
http://news.com.com/8301-10784_3-9710845
-7.html

Safari for Windows: Released and hacked in
a day
http://www.infoworld.com/article/07/06/11/Saf
ari-for-Windows-released-and-hacked-in-a-da
y_1.html

Trends in Mac Market Share
http://arstechnica.com/journals/apple.ars/200
7/04/05/trends-in-mac-market-share

With Windows port, a bug-hunting Safari for
Apple
http://www.infoworld.com/article/07/06/12/Wit
h-Windows-port-a-bug-hunting-Safari-for-App
le_1.html

Mac OS X PPC Shellcode Tricks
http://uninformed.org/?v=1&a=1&t=pdf

Figure 7: Advertisement for X-ray.

http://www.apple.com/macosx/leopard/
http://www.apple.com/macosx/leopard/
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2124.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://developer.apple.com/technotes/tn2004/tn2123.html
http://www.apple.com/macosx/features/applescript/
http://www.apple.com/macosx/features/applescript/
http://www.apple.com/macosx/features/applescript/
http://www.apple.com/macosx/features/applescript/
http://www.apple.com/macosx/features/automator/
http://www.apple.com/macosx/features/automator/
http://www.apple.com/macosx/features/automator/
http://www.apple.com/macosx/features/automator/
http://pedram.redhive.com/PaiMei/docs/
http://pedram.redhive.com/PaiMei/docs/
http://livepage.apple.com/
http://livepage.apple.com/
http://sun.systemnews.com/articles/102/2/news/16842
http://sun.systemnews.com/articles/102/2/news/16842
http://sun.systemnews.com/articles/102/2/news/16842
http://sun.systemnews.com/articles/102/2/news/16842
http://docs.sun.com/app/docs/doc/819-5488
http://docs.sun.com/app/docs/doc/819-5488
http://www.python.org/doc/2.3.5/mac/scripting.html
http://www.python.org/doc/2.3.5/mac/scripting.html
http://www.python.org/doc/2.3.5/mac/scripting.html
http://www.python.org/doc/2.3.5/mac/scripting.html
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://developer.apple.com/documentation/Darwin/Conceptual/
http://developer.apple.com/documentation/Darwin/Conceptual/
http://developer.apple.com/documentation/Darwin/Conceptual/
http://developer.apple.com/documentation/Darwin/Conceptual/
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://felinemenace.org/papers/p63-0x05_OSX_Heap_Exploitation_Technqiues.txt
http://news.com.com/8301-10784_3-9710845-7.html
http://news.com.com/8301-10784_3-9710845-7.html
http://news.com.com/8301-10784_3-9710845-7.html
http://news.com.com/8301-10784_3-9710845-7.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://www.infoworld.com/article/07/06/11/Safari-for-Windows-released-and-hacked-in-a-day_1.html
http://arstechnica.com/journals/apple.ars/2007/04/05/trends-in-mac-market-share
http://arstechnica.com/journals/apple.ars/2007/04/05/trends-in-mac-market-share
http://arstechnica.com/journals/apple.ars/2007/04/05/trends-in-mac-market-share
http://arstechnica.com/journals/apple.ars/2007/04/05/trends-in-mac-market-share
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://www.infoworld.com/article/07/06/12/With-Windows-port-a-bug-hunting-Safari-for-Apple_1.html
http://uninformed.org/?v=1&a=1&t=pdf
http://uninformed.org/?v=1&a=1&t=pdf

Appendix
Filemon in dtrace
/*
 * dtrace -qs filemon.d <PID>
*/

syscall::open:entry,
syscall::open64:entry
/pid == $1 /
{
 printf("%s(%s)", probefunc, copyinstr(arg1));
}

syscall::open64:return,
syscall::open:return
/pid == $1 /
{
 printf("\t\t = %d\n", arg1);
}

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 printf("%s(%d, %s, %4d)", probefunc, arg0, stringof(copy-
in(arg1,arg2)), arg2);
}

syscall::read:return,
syscall::write:return
/pid == $1/
{
 printf("\t\t = %d\n", arg1);
}

syscall::close:entry
/pid == $1/
{
 printf("%s(%d)\n", probefunc, arg0);
}

sharefuzz in dtrace
/*
 * dtrace -wp `pgrep test` -s sharefuzz.d
*/

pid$target::getenv:return
/execname == "test"/
{

copyoutstr("AA"
, arg1, 128);
}

ltrace in Dtrace
/*
 * dtrace -qp `pgrep test` -s ltrace.d
*/

pid$target:::entry
/execname == "test"/
{
 printf("%s", probefunc);

}

pid$target:::return
/execname == "test"/
{
 printf("\t\t=%d\n", arg1);
}

Instruction tracer in Dtrace
/*
 * dtrace -qp `pgrep test` -s trace.d
*/

pid$target:a.out:foo:*
/execname == "test2"/
{
 printf("08%x\n", uregs[R_EIP]);
}

Code coverage using Dtrace
/*
 * dtrace -qp `pgrep test` -s code_coverage.d
*/

pid$target:a.out:foo:*
/execname == "test2"/
{
 @code_coverage[uregs[R_EIP]] = count();
}

